A Sufficient Statistics Approach for Endogenous Production Networks: Theory and Evidence from Ukraine's War

Vasily Korovkin, CERGE-EI Alexey Makarin, MIT Sloan Yuhei Miyauchi, Boston University June 2023

Motivation: Disruption & Reorganization of Production Networks

- Countries and regions are interconnected through production networks
- These networks propagate localized shocks to surrounding countries and regions
 - Transient shocks: e.g., natural disasters, trade shocks
 - Intense & prolonged shocks: e.g., war& conflict
- Firms endogenously reorganize production networks as a response to shocks
 - Mitigation through substitution
 - Cascading failures
 - Change local factor prices and economic activity

This Paper: Theory and Evidence from 2014 Russia-Ukraine Conflict

• Theory: welfare changes in many multi-location endogenous network models follow:

$$\widehat{W}_{i}=\hat{\Lambda}_{ii}^{-rac{1-eta}{eta}rac{1}{arepsilon}}\hat{M}_{ii}^{rac{1-eta}{eta}\eta}$$

- β : labor share, ε : input substitution (trade) elasticity
- $\hat{\Lambda}_{ii}$: change in within-region sourcing share (Arkolakis, Costinot, Rodriguez-Clare; ACR '12)
- \hat{M}_{ii} : change in measures of suppliers per buyer within a region; η : "supplier link elasticity"

This Paper: Theory and Evidence from 2014 Russia-Ukraine Conflict

• Theory: welfare changes in many multi-location endogenous network models follow:

$$\widehat{W}_i = \hat{\Lambda}_{ii}^{-rac{1-eta}{eta}rac{1}{arepsilon}} \hat{M}_{ii}^{rac{1-eta}{eta}\eta}$$

- β : labor share, ε : input substitution (trade) elasticity
- $\hat{\Lambda}_{ii}$: change in within-region sourcing share (Arkolakis, Costinot, Rodriguez-Clare; ACR '12)
- \hat{M}_{ii} : change in measures of suppliers per buyer within a region; η : "supplier link elasticity"
- Reduced-form evidence:
 - Universe of firm-to-firm railroad shipments in 2012-2016 within Ukraine
 - Disruption of firm sales depending on supplier & buyer conflict exposure
 - Increase of supplier & buyer linkages strictly outside conflict areas

This Paper: Theory and Evidence from 2014 Russia-Ukraine Conflict

• Theory: welfare changes in many multi-location endogenous network models follow:

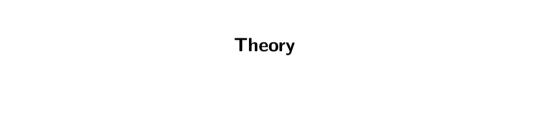
$$\widehat{W}_{i} = \hat{\Lambda}_{ii}^{-\frac{1-eta}{eta}\frac{1}{arepsilon}} \hat{M}_{ii}^{\frac{1-eta}{eta}\eta}$$

- β : labor share, ε : input substitution (trade) elasticity
- $\hat{\Lambda}_{ii}$: change in within-region sourcing share (Arkolakis, Costinot, Rodriguez-Clare; ACR '12)
- \hat{M}_{ii} : change in measures of suppliers per buyer within a region; η : "supplier link elasticity"
- Reduced-form evidence:
 - Universe of firm-to-firm railroad shipments in 2012–2016 within Ukraine
 - Disruption of firm sales depending on supplier & buyer conflict exposure
 - Increase of supplier & buyer linkages strictly outside conflict areas
- Sufficient-statistics results:
 - Estimate supplier link elasticity (η) using variation in exposures to conflict
 - \bullet \downarrow 17% for an average region (relative to no conflict exposure regions)
 - Overestimation without $\hat{M}_{ii}^{\frac{1-\beta}{\beta}\eta}$ (31% instead of 17%)

Contributions to the Literature

- Economic Costs of Conflict: Guidolin & La Ferrara '07; Hjort '14; Amodio & Di Maio '18; Rohner & Thoenig '21; Ksoll, Macchiavello, Morjaria '22; Couttenier, Monnet, Piemontese '22; Korovkin & Makarin '23
- \Rightarrow Show large propagation of localized conflict through disruption & reorganization of production networks
 - Endogenous Production Networks:
 - Relationship-specific fixed cost: Bernard, Moxnes, Ulltveit-Moe '18; Lim '18; Huneeus '18; Bernard, Moxnes, Saito '19; Zou '20; Bernard, Dhyne, Magerman, Manova, Moxnes '22; Dhyne, Kikkawa, Kong, Mogstad, Tintelnot '22
 - Optimal supplier choice: Oberfield '18; Boehm & Oberfield '20; Acemoglu & Azar '20;
 Taschereau-Dumouchel '20; Eaton, Kortum, Kramarz '22; Antras & de Gortari '20; Miyauchi '23;
 Panigraphi '21; Lenoir, Martin, Mejean '22
 - Endogenous search intensity: Demir, Fieler, Xu, Yang '21; Arkolakis, Huneeus, Miyauchi '23
 - Sufficient Statistics in Trade and Production Networks: Arkolakis, Costinot, Rodriguez-Clare '12; Blaum, Lelarge, Peters '18; Donaldson '18; Baqaee, Burstein, Duperez, Farhi '23
- \Rightarrow Develop common (ex-post) welfare sufficient statistics and use it to study causal effects of conflicts

Outline


Theory

Background and Data of Ukrainian Conflict

Reduced-Form Evidence

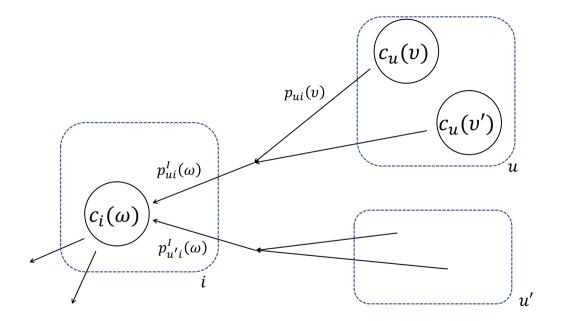
Sufficient Statistics Analysis

Conclusion

Model Set-up

- "Locations" $i, u, d \in \mathcal{L}$
- Intermediate goods produced by "firms"; final goods produced by "retailers"
- Ω_i : set of firms in location i
 - Use local labor and intermediate inputs for production
- Intermediate goods are traded among connected firms across different locations
 - $S_{ui}(\omega) \subset \Omega_u$: set of suppliers in location u that firm $\omega \in \Omega_i$ in i is connected to
 - Endogenous, but do not model how it is determined

Equilibrium


• Unit cost of firm ω in location i:

$$c_{i}\left(\omega\right) = \frac{1}{z_{i}\left(\omega\right)}w_{i}^{\beta}\left(\sum_{u\in\mathcal{L}}\left(p_{ui}^{I}(\omega)\right)^{-\varepsilon}\right)^{\frac{1-\beta}{-\varepsilon}}, \qquad p_{ui}^{I}(\omega) = f_{ui,\omega}\left(\left\{p_{ui}(\upsilon)\right\}_{\upsilon\in\mathcal{S}_{ui}(\omega)}\right)$$

- $z_i(\omega)$: productivity; w_i : wage
- β : labor share; ε : input substitution (trade) elasticity
- $p_{ui}(v)$: unit price of supplier v to sell firms in location i

$$p_{ui}(v) = c_u(v) \qquad \underbrace{\tau_{ui}(v)}_{\text{iceberg trade cost}} \underbrace{\rho_{ui}(v)}_{\text{exogenous) markups}}$$

• Final goods produced using local intermediate inputs: $P_{i}^{F} = h_{i}\left(\left\{c_{i}\left(v\right)\right\}_{v \in \Omega_{i}}\right)$

Assumption (1. Aggregation)

Price index of input bundle can be expressed as:

$$p_{ui}^{I}(\omega) = P_{ui}^{I}g_{i}(\omega),$$

where $g_i(\omega)$ only depends on the exogenous variable and parameters.

- Implies $c_i(\omega) = C_i g_i^C(\omega)$, $p_{ui}(\omega) = P_{ui} g_{ui}^P(\omega)$
- Only need to keep track of $\{P_{ui}^I, P_{ui}, C_i\}$
- High-level assumption satisfied in many parametric production network models

multiple firm types

Lemma

Under Assumption 1, the changes in real wages from external shock are given by

$$\widehat{\frac{W_i}{P_i^F}} = \left(\underbrace{\hat{\Lambda}_{ii}}_{\textit{within-region source share}} \right)^{-\frac{1-\beta}{\beta}\frac{1}{\varepsilon}} \left(\underbrace{\hat{P}_{ii}^{I}/\hat{C}_{i}}_{\textit{input bundle price / average supplier's cost}} \right)^{-\frac{\Sigma-\beta}{\beta}}$$

• Proof: Shephard's Lemma + CES input demand + $(\hat{P}_i^F = \hat{C}_i)$

$$\left(\hat{C}_{i}\right)^{-\varepsilon} = \hat{w}_{i}^{-\beta\varepsilon} \left(\left(\hat{C}_{i}\right)^{-\varepsilon} \underbrace{\left(\frac{\hat{P}_{ii}^{I}}{\hat{C}_{i}}\right)^{-\varepsilon}}_{\text{"value of supplier bundles" within a region}} \underbrace{\hat{\Lambda}_{ii}^{-1}}_{\text{terms of trade}}\right)^{1-\beta}$$

• Without changes of production networks, $\hat{P}_{ii}^{I}/\hat{C}_{i}=1$ (ACR '12)

- $\hat{P}_{ii}^{I}/\hat{C}_{i}$ hard to observe / estimate
- In many existing parametric production network models (Assumption 2),

$$\hat{P}_{ii}^I/\hat{C}_i=\hat{M}_{ii}^{-\eta},$$

- \hat{M}_{ii} : a common change in the measure of suppliers within a region $(\hat{m}_{ii}(\omega) = \hat{M}_{ii})$
- η : supplier link elasticity (elas' of marginal cost w.r.t. measure of supplier linkages)

Proposition

Under Assumption 1 and 2,

$$\widehat{\frac{w_i}{P_i^F}} = \hat{\Lambda}_{ii}^{-\frac{1-\beta}{\beta}\frac{1}{\varepsilon}} \hat{M}_{ii}^{\frac{1-\beta}{\beta}\eta}$$

Different Endogenous Network Models, Same Welfare Changes detail

- Endogenous search intensity (e.g., Arkolakis, Huneeus, Miyauchi '23)
 - CES production function
 - $\varepsilon = \sigma 1$, $\eta = \frac{1}{\sigma 1} (= 1/\varepsilon)$
- Relationship-specific fixed cost (e.g., Bernard, Moxnes, Ulltveit-Moe '18)
 - ullet CES + selection with Pareto productivity dispersion heta

•
$$\varepsilon = \sigma - 1$$
, $\eta = \frac{1}{\sigma - 1} - \frac{1}{\theta} (< 1/\varepsilon)$

- Optimal supplier choice (e.g., Eaton, Kortum, Kramarz '22)
 - ullet Homogeneous inputs, Pareto productivity dispersion heta, biased matching γ

•
$$\varepsilon = \theta(1 - \gamma), \quad \eta = \frac{1}{\theta(1 - \gamma)} (= 1/\varepsilon)$$

- Other examples
 - Separate variety gains from substitution (Benassy '98; Acemoglu, Antras, Helpman '07)
 - Entry into input market (Antras, Fort, Tintelnot '17)
 - Diversifying idiosyncratic supplier risks (Anderson, de Palma, Thisse '92)
 - Network formation under adjustment frictions (Lim '18, Huneeus '19)

Discussion and Extensions

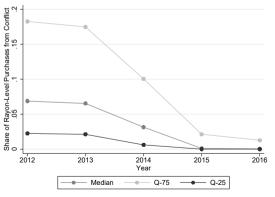
- Firm profit
 - Wage \propto total firm profit under trade balance & constant markup $\rho_{id}(\omega)$ (Assumption 1 & 2 of ACR)
- Firm entry
 - Additional effect arises only from the change in final prices $N_i \uparrow \Rightarrow \hat{P}_i^F/\hat{C}_i \downarrow$
 - Same argument for labor shocks and mobility
- Final goods trade detail
- Multiple sector (i.e., Caliendo & Parro '15)
- Multiple firm types detail
- Nonparametric production function detail
- Alternative sufficient statistics using Domar weights detail

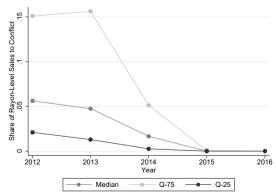
Background and Data of Ukrainian Conflict

Background: 2014 Ukraine War

- In February 2014, right after Ukrainian revolution, Russia annexed Crimea and started supporting Donbas separatists
- Intense but localized conflict in Donbas regions (until February 2022)
- Donbas (and Crimea) were economic centers of Ukraine before the war
 - Donbas: extractive industry (coal), metallurgy, manufacturing
 - Crimea: agriculture, tourism, some industry
 - Jointly covered 17.5% of Ukraine's 2013 GDP
- Sudden and large drop in production in Donbas (and Crimea) regions event study
 - Production disruption, disconnected from transportation networks
- Q. How did the conflict affect economic activity & welfare outside direct conflict areas?

Background: 2014 Ukraine War


Data

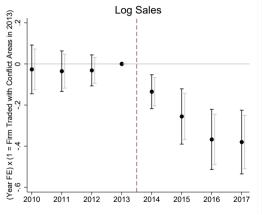

- Universe of firm-to-firm railroad shipments in Ukraine, 2012–2016 map
 - >41 mln transactions between >7 k firms
 - Sender and receiver firm IDs, dates, weights (kg), freight charges, product codes, origin & destination station codes
 - 80% of all freight in ton-km within Ukraine is through railways (Ukr Stat, 2018)
- Accounting data for Ukrainian firms, 2010–2017
 - Sources: Spark-Interfax database; ORBIS

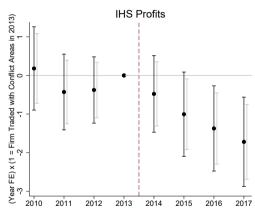
Reduced-Form Evidence

Sudden and Large Drop of Trade from & to Conflict Areas

- Weighted fraction of suppliers (left) and buyers (right) from/to conflict areas
- ullet Samples: rayons (regions) outside direct conflict areas (pprox 400)

Firm-Level Impacts of Conflict Exposure


Difference-in-differences specification:

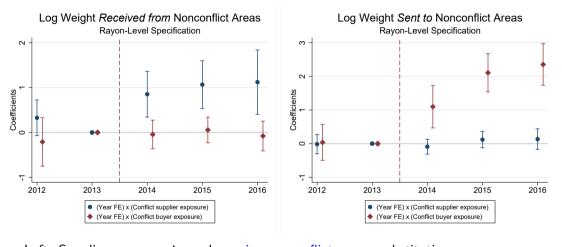

$$Y_{ft} = \alpha_f + \delta_t + \beta_t \times ConflictTradeExposure_{f,2013} + \varepsilon_{ft}$$

- \bullet Y_{ft} sales of firm f (in non-conflict area of Ukraine) at year t
- ConflictTradeExposure_{f,2013} whether firm f traded with Crimea, DPR, or LPR before the start of the conflict

Identifying assumption: Absent the conflict, firms with varying pre-war ties to Donbas & Crimea would have evolved along parallel trends

Firm-Level Impacts of Conflict Exposure: Results

Firm-Level Impacts of Conflict Exposure: By Supplier and Buyer Exposures


	(1)	(2)	(3)	(4)
	Log Sales	IHS	Log Sales	IHS
		Profits		Profits
Post x High buyer conflict exposure, 2013	-0.196***	-0.942*		
3 ,	(0.074)	(0.542)		
Post x High seller conflict exposure, 2013	-0.216* [*] *	0.192		
	(0.074)	(0.519)		
Post x Buyer conflict exposure, 2013		, ,	-0.338*	-0.697
			(0.187)	(1.733)
Post x Seller conflict exposure, 2013			-0.301***	-0.017
			(0.101)	(0.727)
Firm FE	\checkmark	\checkmark	\checkmark	\checkmark
Year FE	\checkmark	\checkmark	\checkmark	\checkmark
Mean	17.079	6.765	17.079	6.765
SD	2.407	13.124	2.407	13.124
R^2	0.83	0.48	0.83	0.48
Observations	25,491	24,751	25,491	24,751
Number of Firms	3,713	3,677	3,713	3,677

Impacts of Conflict Exposure on Trade and Linkages in Nonconflict Areas

$$Y_{it} = \gamma \times Post_i \times SupplierExposure_i + \beta \times Post_t \times BuyerExposure_i + \alpha_i + \delta_t + \varepsilon_{it}$$

- *i*: rayons (excluding conflict areas)
- SupplierExposure_i: Weighted fraction of shipment *from* conflict areas in 2013 in i
- BuyerExposure_i: Weighted fraction of shipment to conflict areas in 2013 in i
- Y_{it} : Sales or purchases (weight) of rayon i to or from nonconflict areas

Impacts of Conflict Exposure on Trade and Linkages in Nonconflict Areas

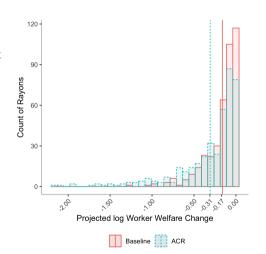
- Left: Supplier exposure ↑ purchases in non-conflict areas: substitution
- Right: Buyer exposure ↑ sales in non-conflict areas: capacity constraint or GE effect

Sufficient Statistics Analysis

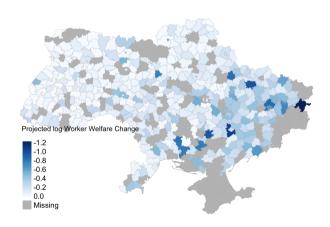
Quantify Welfare Losses from Propagation Effects outside Conflict Areas

$$\frac{\widehat{w_i}}{P_i^F} = \hat{\Lambda}_{ii}^{-\frac{1-\beta}{\beta}\frac{1}{\varepsilon}} \hat{M}_{ii}^{\frac{1-\beta}{\beta}\eta}$$

- 1. Measure time changes in Λ_{ii} and M_{ii} before and after conflict
 - Convert shipment weight to value using product code (in progress)
 - Project on empirical gravity equations for data sparseness (Dingel & Tintelnot '21)
- 2. Calibrate / estimate $\{\beta, \varepsilon, \eta\}$
 - Labor share $\beta=$ 0.2; input substitution $\varepsilon=$ 4 (Oberfield & Raval '21)
 - ullet Supplier link elasticity $\eta=1.23/arepsilon$: estimate using conflict exposure variations lacktriangle


More Reduction of Welfare in Higher Conflict Exposure Rayons

	Dependent Variables: Sufficient Statistics for Worker Welfare							
	Baseline $(rac{1-eta}{eta}rac{1}{arepsilon} ilde{\Lambda}_{ii}+rac{1-eta}{eta}\eta ilde{M}_{ii})$;)	ACR $(\frac{1-\beta}{\beta}\frac{1}{\varepsilon}\tilde{\Lambda}_{ii})$	Supplier Link Margin $(rac{1-eta}{eta}\eta ilde{M}_{ii})$		
	(1)	(2)	(3)	(4)	(5)	(6)		
Conflict Supplier Exposure (Value)	-1.000***		-0.883***	-0.968***	-0.996***	0.112		
	(0.205)		(0.208)	(0.257)	(0.211)	(0.204)		
Conflict Buyer Exposure (Value)		-0.730***	-0.542***	-0.569***	-1.781***	1.238***		
		(0.206)	(0.207)	(0.212)	(0.209)	(0.202)		
\sum Conflict $ imes$ Forward Domar Weights				0.170				
				(0.302)				
Constant	0.891***	0.851***	0.935***	0.890***	0.681***	0.254***		
	(0.043)	(0.042)	(0.045)	(0.092)	(0.046)	(0.045)		
Observations	403	403	403	403	403	403		
Adjusted R ²	0.054	0.028	0.067	0.066	0.222	0.088		


• Ignoring "supplier link margin" overestimate the relationships (Column 5 and 6)

Projected Welfare Loss outside Conflict Areas

- Predict welfare loss using supplier & buyer conflict exposures using the previous regression
- Welfare \downarrow 17% for an average region (relative to regions with zero exposures)
- ullet Substantial overestimation of welfare loss (\downarrow 31%) if we ignore supplier link margin
- Large regional heterogeneity

Regional Heterogeneity in Welfare Loss outside Conflict Areas

Conclusion

- Develop common welfare sufficient statistics under endogenous production networks
- Show large propagation effects of 2014 Ukraine War, beyond Donbas and Crimea
- Highlights a key mechanism in which localized conflict often have far-reaching detrimental consequences for the broader economy (Rohner & Thoenig '21)

Different Endogenous Network Models, Same Welfare Changes

- Endogenous search intensity: Demir, Fieler, Xu, Yang '21; Arkolakis, Huneeus, Miyauchi '23
- Relationship-specific fixed cost: Bernard, Moxnes, Ulltveit-Moe '18; Lim '18; Huneeus '18; Bernard, Moxnes, Saito '19; Bernard, Dhyne, Magerman, Manova, Moxnes '22; Dhyne, Kikkawa, Kong, Mogstad, Tintelnot '22
- Optimal supplier choice: Oberfield '18; Boehm & Oberfield '20; Acemoglu & Azar '20; Taschereau-Dumouchel '20; Eaton, Kortum, Kramarz '22; Antras & de Gortari '20; Miyauchi '23; Panigraphi '21; Lenoir, Martin, Mejean '22

Example: Endogenous Search Intensity

- Single-sector version of Arkolakis, Huneeus, Miyauchi '23
- CES production function, common σ within and across regions ($\varepsilon = \sigma 1$)

$$p'_{ui}(\omega) = \left(\int_{\upsilon \in \mathcal{S}_{ui}(\omega)} c_u(\upsilon)^{1-\sigma} d\upsilon\right)^{\frac{1}{1-\sigma}}$$

- Suppliers and buyers choose endogenous intensity of search, match realizes based on matching technology
- ε , η are given by

$$\varepsilon = \sigma - 1, \quad \eta = \frac{1}{\sigma - 1} (= \frac{1}{\varepsilon}),$$

ullet Do not depend on matching technology and search decisions (summarized by \hat{M}_{ii})

Example: Relationship-Specific Fixed Cost

- A version of Bernard, Moxnes, Ulltveit-Moe '19 with input-output loops
- CES production function as Arkolakis, Huneeus, Miyauchi '23
- ullet Relationship forms if supplier v is willing to pay fixed cost f_{ui}
- ullet Productivity follows Pareto distribution with dispersion parameter heta
- ε , η are given by

$$arepsilon = \sigma - 1, \quad \eta = rac{1}{\sigma - 1} - rac{1}{ heta} (< rac{1}{arepsilon})$$

ullet 1/ heta comes from negative assortative matching

Example: Optimal Supplier Choice

- A version of Eaton, Kortum, Kramarz '22 without in-house production
- Suppliers and buyers randomly match, and buyers choose the best supplier

$$p_{ui}^{I}(\omega) = \min_{\upsilon \in \mathcal{S}_{ui}(\omega)} p_{ui}(\upsilon)$$

- ullet Pareto Productivity with dispersion heta; matching technology is biased toward lower-cost suppliers with weight γ
- ε , η are given by

$$arepsilon = heta(1-\gamma), \quad \eta = rac{1}{ heta(1-\gamma)} (=rac{1}{arepsilon})$$

- Note: $S_{ui}(\omega)$ is potential (\neq realized) set of suppliers
 - With exogenous matching rates, formula still holds with $\eta = 0$ (Oberfield '20)
 - Otherwise, can use gravity to back out measure of potential suppliers

Examples: Additional Remarks go back

- Substantially general than existing models
 - Allow more flexible firm heterogeneity in productivity $z_i(\cdot)$, trade costs $\tau_{id}(\cdot)$, (exogenous) markups $\rho_{id}(\cdot)$, depending on models
 - Different elasticity of substitution within and across locations
- Other examples
 - Separate variety gains from substitution (Benassy '98; Acemoglu, Antras, Helpman '07)
 - Entry into input market (Antras, Fort, Tintelnot '17)
 - Expression unchanged if firms always enter own region
 - Diversifying idiosyncratic supplier risks (Anderson, de Palma, Thisse '92)
 - Network formation under adjustment frictions (Lim '18, Huneeus '19)
- Some models imply non-iso-elastic function of \hat{M}_{ii} in welfare sufficient statistics e.g., Miyauchi '21; EKK '22 with in-house production

Final Goods Trade go back

• CES preference for final goods

$$P_i^F = \left(\sum_{\ell} \left(au_{\ell i}^F C_{\ell}
ight)^{
u}
ight)^{rac{1}{
u}}$$

• Real Wages:

$$\hat{W}_{i} = \hat{\Lambda}_{ii}^{-\frac{1-\beta}{\beta}\frac{1}{\varepsilon}} \hat{M}_{ii}^{\frac{1-\beta}{\beta}\eta} \left(\hat{\Lambda}_{ii}^{F}\right)^{-\frac{1}{\nu}}$$

where $\hat{\Lambda}^F_{ii}$ is the within-region expenditure share in final goods

Multiple Sectors go back

- k, m ∈ K: sectors (Caliendo & Parro '15; Costinot & Rodriguez-Clare '14)
- Unit cost

$$c_{i,k}(\omega) = z_{i,k}(\omega) w_i^{\beta_{i,Lk}} \prod_{m \in K} \left(\sum_{u} \left(p'_{ui,mk}(\omega) \right)^{-\varepsilon_m} \right)^{\frac{\beta_{i,mk}}{-\varepsilon_m}}$$

• Cobb-Douglas preference:

$$\hat{P}_{i}^{F} = \prod_{i} \hat{C}_{i,k}^{\alpha_{i,k}}$$

• Real Wages:

$$\log \frac{\hat{w}_i}{\hat{P}_i^F} = \sum_k \alpha_k \sum_{m,h \in K} \tilde{\beta}_{i,hk} \beta_{i,mh} \left(-\frac{1}{\varepsilon_m} \log \hat{\Lambda}_{ii,mk} + \log \frac{\hat{P}_{ii,mk}^I}{\hat{C}_{i,m}} \right)$$

where $\tilde{\beta}_{i,mk}$ is (m,k)-th element of Leontief inverse: $(I-B_i)^{-1}$ with $B_{i,mk}=\beta_{i,mk}$

Multiple Firm Types (go back)

• Unit cost of type ϑ firm

$$c_{i,\vartheta}\left(\omega\right) = z_{i,\vartheta}\left(\omega\right) w_i^{\beta_{i,\vartheta}} \left(\sum_{u} \left(p_{ui}^{I}(\omega)\right)^{-\varepsilon}\right)^{\frac{1-\beta_{i,\vartheta}}{-\varepsilon}}$$

• First-order approximation of external shocks on real wages:

$$d\log\frac{w_i}{P_i^F} = -\sum_{\vartheta} \Lambda_{i,\vartheta}^F \frac{1 - \beta_{i,\vartheta}}{\beta_{i,\vartheta}} \left(\frac{1}{\varepsilon} d\log \Lambda_{ii,\vartheta'\vartheta} + d\log \frac{P_{ii,\vartheta'\vartheta}^I}{C_{i,\vartheta'}} \right)$$

- $\Lambda_{i,\vartheta}^F$: share of final goods expenditure for ϑ
- $\tilde{\Lambda}_{ii,\vartheta'\vartheta}$: type ϑ and location i firms' share of intermediate inputs within same type and location

Nonparametric Production Function (80 back)

• Nonparametric production function

$$c_i(\omega) = f_i\left(w_i, \left\{p'_{ui}(\omega)\right\}_{u}\right),$$

• Define elasticity of substitution for inputs sourced within a region:

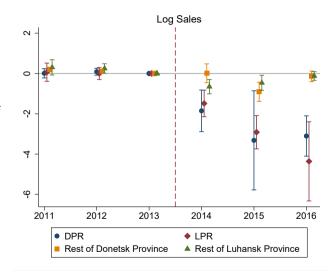
$$\mathcal{E} \equiv rac{d \log \Lambda_{ii}}{\left(1 - \Lambda_i^L\right)^{-1} \sum_{ij} \Lambda_{ij} d \log p_{ij}^I - d \log p_{ij}^I}$$

• First-order changes in real wages:

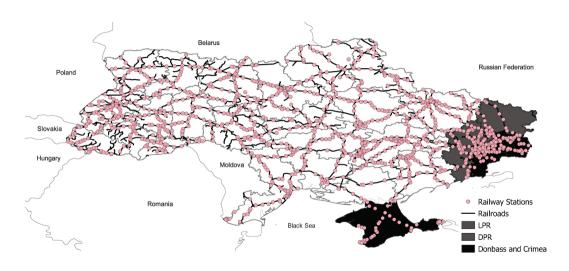
$$d\log\frac{w_i}{c_i} = -\left(\frac{1-\Lambda_i^L}{\Lambda_i^L}\right)d\log\frac{p_{ii}^I}{c_i} - \left(\frac{1-\Lambda_i^L}{\Lambda_i^L}\right)\frac{1}{\mathcal{E}}d\log\Lambda_{ii}$$

Alternative Decomposition using Domar Weights go back

- For simplicity, consider a change in variable trade costs $\{\tau_{ij}\}$
- Change in production cost is also rewritten as


$$\log C_i = \sum_{u} \psi_{ui}^L \log w_u + \sum_{u} \psi_{uj} \left(d \log \tau_{ij} + d \log \left(\hat{P}_{ui}^I / \hat{P}_{ui} \right) \right)$$

- ψ_{ui}^{L}, ψ_{ui} : forward Domar weights
- To obtain real wage changes, need to keep track of the changes in the wage vector in all locations $\{\log w_u\}_u$


Sudden and Large Drop of Total Firm Sales in Conflict Areas (go back)

$$\begin{split} Y_{rt} = & \beta_t^{LPR} \times \mathsf{LPR}_r \times \mathsf{Post}_t \\ & + \beta_t^{DPR} \times \mathsf{DPR}_r \times \mathsf{Post}_t \\ & + \beta_t^{DON} \times \mathsf{Donetsk}_r \times \mathsf{Post}_t \\ & + \beta_t^{LUH} \times \mathsf{Luhansk}_r \times \mathsf{Post}_t \\ & + \alpha_r + \kappa_t + \varepsilon_{rt} \end{split}$$

- r: rayon (district)
- Exclude Crimea due to data quality after the annexation

Ukrainian Railroads with Stations (go back)

Estimation Strategy: η

• Input expenditure share of firms in *d* from *i*:

$$\tilde{\Lambda}_{id} = -\varepsilon \tilde{C}_i + \eta \varepsilon \tilde{M}_{id} - \varepsilon \tilde{\tau}_{id} + \tilde{\xi}_d$$

• Shepard's Lemma + CES input demand

$$ilde{C}_i = eta ilde{w}_i + (1-eta) \left(ilde{C}_d + \eta ilde{M}_{di} + ilde{ au}_{di} - rac{1}{arepsilon} ilde{\Lambda}_{di}
ight)$$

Combining, our estimating equation:

$$ilde{\Lambda}_{id} + \left(1 - eta
ight) ilde{\Lambda}_{di} + etaarepsilon ilde{w}_i = \etaarepsilon\left(ilde{M}_{id} + \left(1 - eta
ight) ilde{M}_{di}
ight) + ilde{\xi}_d^* + ilde{ au}_{id}^*$$

- $\tilde{\xi}_{d}^{*}$: destination FE; $\tilde{\tau}_{id}^{*}$: residuals
- Samples: region pairs excluding if i or d are in direct conflict areas
- IV: supplier and buyer conflict exposures of region i

Estimation Results of $\eta \times \varepsilon$ go back

	Dependent variable:			
	$ ilde{M}_{id} + (1-eta) ilde{M}_{di} ext{OLS}$	$ ilde{M}_{id}$ OLS	$ ilde{M}_{di}$ OLS	$ ilde{h}_{id} + (1-eta) ilde{h}_{di} + eta arepsilon ilde{w}_i ext{V}$
	(1)	(2)	(3)	(4)
Conflict Supplier Exposure _i	0.729**	0.101	0.785***	
	(0.313)	(0.276)	(0.124)	
Conflict Buyer Exposure;	1.137***	1.177***	-0.050	
	(0.418)	(0.362)	(0.138)	
$ ilde{ extit{M}}_{id} + (1-eta) ilde{ extit{M}}_{di}$				1.231***
				(0.296)
IV				Supplier and Buyer Exposures
First-Stage F-stat				6.56
d FE	X	Χ	Χ	X
Observations	155,555	155,555	155,555	155,555
Adjusted R ²	0.480	0.250	0.820	0.357

Existing models imply $\eta \varepsilon = 1$ (Arkolakis et al '23; Eaton et al '22) or $\eta \varepsilon < 1$ (Bernard et al '18)