Online Correction to "Social Media and Protest Participation: Evidence from Russia"

Ruben Enikolopov^{a,b,c,d}, Alexey Makarin^{e,f}, and Maria Petrova^{a,b,c,d}

^aICREA-Barcelona Institute of Political Economy and Governance ^bUniversitat Pompeu Fabra ^cBarcelona Graduate School of Economics ^dNew Economic School, Moscow ^eMIT Sloan School of Management ^fEinaudi Institute for Economics and Finance (EIEF)

July 2022

This document corrects an error in the construction of two control variables used in Enikolopov et al. (2020). While working on a new project that uses data from Enikolopov et al. (2020) it was noticed that the coordinates of 58 out of 625 cities in the sample were incorrect. As a result, two of the control variables used in the paper—spherical distances to Moscow and Saint Petersburg—were computed erroneously. Since these control variables were part of the baseline specification, the authors feel the need to issue a correction.

In this online correction, we proceed as follows. In Section 1, we describe the issue of near multicollinearity that arises once one uses the corrected city coordinates and argue that the underlying cause is near multicollinearity rather than a substantive relation between the instrument and the endogenous variable. In Section 2, we propose alternative approaches to solve this issue and indicate our preferred correction; all results remain qualitatively unchanged.

1 The Issue

The initial problem stems from a coding mistake that truncated the coordinates for 58 out of 625 cities in our sample, which led to incorrect calculations of two control variables: spherical distances to Moscow and Saint Petersburg. Once these distances are recalculated using the correct coordinates, they become almost perfectly correlated, with the correlation coefficient of 0.98. If one uses the corrected control variables in the analysis, the coefficient for the instrument in a first-stage regression shrinks in magnitude and becomes not statistically significant (see Table 1 below, which corresponds to Table I in Enikolopov et al., 2020). In the original article, the coefficient in column (5) of Table I was 0.1323 with the effective F-statistics (Olea and Pflueger, 2013) of 10.97 (see column (1) in Table II in the original article). With corrected coordinates, the coefficient falls to 0.0287 and the effective F-statistics falls to around 0.698 (column (5) in Table 1 and column (1) in Table 2, respectively). At the same time, the reduced form results remain similar—see Table 2 that corresponds to Table SA.I in the Supplementary materials to Enikolopov et al. (2020). However, the substantially weakened first stage adversely impacts all the subsequent IV-based estimates (see Table 3 that corresponds to Table II in Enikolopov et al. (2020)).

We believe that the weakened first stage is due to a technical issue of near-multicollinearity caused by the inclusion of two almost perfectly correlated control variables (Farrar and Glauber, 1967) rather than a substantive problem caused by the fact that controlling for these two variables captures some important relationship between the instrument and the endogenous variable.

There are several reasons why we think that this is a technical rather than a substantive issue. First, when one of the authors originally tried to replicate the results with the corrected spherical distances, the author received an error message about a highly singular matrix. The estimator started converging only after an overall update to all STATA packages.

Second, we observe that the Kleibergen-Paap and effective F-statistics for the instrument increase if we mechanically reduce the correlation between the two distances by adding randomly generated noise to one of these variables.¹ Table 4 shows that the effective F-statistics rises from around 0.7 to 10–11, i.e., close to the level reported in Enikolopov et al. (2020). Furthermore, Table 5 shows that the addition of Gaussian noise restores the baseline results in Enikolopov et al. (2020).

Finally, Table 6 below shows that the results are very close to those reported in the paper if one uses only one of the two distances as a control variable, or their average, or the first principal component of the two variables, or their minimum or maximum—all of which are the recommendations in the case of near-multicollinearity.

2 Proposed alternatives

As mentioned in the previous section, one of the natural solutions to the near-collinearity issue is to leave as a control variable only one of the spherical distances—to Moscow or Saint Petersburg. The latter option is probably easiest to justify as the VK founder studied in Saint Petersburg and, thus, distance to Saint Petersburg accounts for a student's cost of physically reaching Saint Petersburg State University from their hometowns.

Our preferred solution, however, is to replace the spherical distances with the driving distances to the same two cities.² There are two reasons for that. First, due to the poor state of air transportation in Russia at the time, this variable is arguably more likely to capture the difficulty of getting to Moscow or Saint Petersburg by the students as compared with the spherical distance initially used in the analysis. The first stage in this specification is stronger than in Enikolopov et al. (2020) (see Tables 7–8 relative to Tables I–II in the original manuscript), which might reflect the fact that students indeed traveled by road rather than by air at that time. In particular, the first-stage coefficient of 0.1323 in column (5) of Table I of the original article increases to 0.1415 in column (5) of Table 7, and the effective F-statistics increases from 10.97 in column (1) of Table II in the original article to 14.41 in column (1) of Table 8.

Second, this approach minimizes the difference with the published paper since it only changes the definition of the distance variables used in the analysis and not their composition.

¹In particular, we add to the distance to Saint Petersburg a Gaussian noise with a mean zero and a standard deviation varying from one to that of the corrected spherical distance variable (1,462).

²To calculate the driving distances, we use information from the website https://perevozka24.ru/ rastoyanie. For the seven cities that are not connected to Moscow and Saint Petersburg (including the three cities in Yamalo-Nenets autonomous okrug that were connected after the period of analysis), we use an arbitrary high number calculated as twice the maximum driving distance observed in the sample. The results are robust to alternative ways of correcting for non-connected cities using different multiples of the maximum driving distance.

Results that use driving distance to Moscow and Saint Petersburg as the control variables are very close to the results reported in Enikolopov et al. (2020) both in terms of magnitudes and their statistical significance (see Tables 7–10 below).³. E.g., the coefficient for the effect of the number of VK users on the incidence of protests reduces from 0.466 in the original paper (see column (1) of Table II) to 0.430 (see column (1) in Table 8) and remains statistically significant. The coefficient for the effect on Voting for Putin in the 2012 elections decreases from 0.152 (see column (1) in Table III in the original paper) to 0.100 (see column (1) in Table 9) but remains statistically significant.

The results are also robust to controlling for inaccessible city indicators, as well as indicators for accessible but remote cities located in the Far East, Siberia, and North Caucasus.

3 Conclusion

In this correction, we identify the mistake in the calculation of the two control variables in Enikolopov et al. (2020)—the distance to Moscow and Saint Petersburg—that causes the problem of near-multicollinearity. Our preferred correction is to use the driving distances to Moscow and Saint Petersburg instead of the spherical distances. The results using the driving distances to Moscow and Saint Petersburg as the control variables are very close to the results reported in Enikolopov et al. (2020) both in terms of magnitudes and their statistical significance.

References

- ENIKOLOPOV, R., A. MAKARIN, AND M. PETROVA (2020): "Social Media and Protest Participation: Evidence From Russia," *Econometrica*, 88, 1479–1514.
- FARRAR, D. E. AND R. R. GLAUBER (1967): "Multicollinearity in regression analysis: the problem revisited," *The Review of Economic and Statistics*, 92–107.
- OLEA, J. L. M. AND C. PFLUEGER (2013): "A robust test for weak instruments," *Journal of Business & Economic Statistics*, 31, 358–369.

³Note that the results remain robust despite the fact that driving distance to Moscow and Saint Petersburg are also extremely highly correlated.

			Log (nu	mber of VK	(users), Ju	ne 2011		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Log (SPbSU students), same 5-year cohort as VK founder	0.5006	0.1715	0.1749	0.0552	0.0287	0.0287	0.0365	0.0326
	[0.1381]	[0.0441]	[0.0442]	[0.0405]	[0.0400]	[0.0397]	[0.0390]	[0.0415]
Log (SPbSU students), one cohort younger than VK founder	0.5612	-0.0267	-0.0323	-0.0102	-0.0396	-0.0388	-0.0386	-0.0375
	[0.1040]	[0.0508]	[0.0522]	[0.0326]	[0.0322]	[0.0329]	[0.0322]	[0.0322]
Log (SPbSU students), one cohort older than VK founder	0.3687	0.1040	0.0945	-0.0370	-0.0429	-0.0390	-0.0398	-0.0376
	[0.1726]	[0.0459]	[0.0448]	[0.0410]	[0.0386]	[0.0396]	[0.0374]	[0.0376]
Regional center			0.1992	0.3939	0.1522	0.1484	0.1571	0.1689
			[0.1115]	[0.1251]	[0.1292]	[0.1272]	[0.1265]	[0.1309]
Rayon center (county seat)				0.0391	0.0078	0.0160	0.0280	0.0041
				[0.0640]	[0.0548]	[0.0550]	[0.0567]	[0.0540]
Distance to Saint Petersburg, km				-0.0005	-0.0008	-0.0008	-0.0008	-0.0008
				[0.0002]	[0.0001]	[0.0001]	[0.0001]	[0.0001]
Distance to Moscow, km				0.0003	0.0006	0.0006	0.0005	0.0006
				[0.0002]	[0.0001]	[0.0001]	[0.0001]	[0.0001]
Log (average wage), city-level, 2011				0.2915	0.3260	0.3501	0.3401	0.3106
				[0.1228]	[0.1270]	[0.1324]	[0.1122]	[0.1127]
Presence of a university in a city, 2011					0.1559	0.1590	0.1426	0.1628
later at a substitution of size laws 1,0044					[0.0935]	[0.0935]	[0.0929]	[0.0933]
Internet penetration, region-level, 2011					-0.0490		0.0004	0.0254
Lag (number of Odnaklassmiki users) 2014					0.2200	0.0015	0.0052	0.0245
Log (number of Odnoklassniki users), 2014					0.2380	0.2315	0.2252	0.2345
Ethnia fractionalization 2010					[0.0820]		[0.0824]	[0.0832]
					0.0000	0.0092	0.0977	0.3710
					[0.2161]	[0.2107]	[0.2034]	[0.1729]
Observations	625	625	625	625	625	625	625	625
R-squared	0.4428	0.8606	0.8614	0.9251	0.9336	0.9351	0.9355	0.9358
Mean of the dependent variable	9.536	9.536	9.536	9.536	9.536	9.536	9.536	9.536
SD of the dependent variable	1.334	1.334	1.334	1.334	1.334	1.334	1.334	1.334
Population controls		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Age cohort controls				Yes	Yes	Yes	Yes	Yes
Education controls				Yes	Yes	Yes	Yes	Yes
Electoral controls, 1995						Yes		
Electoral controls, 1999							Yes	
Electoral controls, 2003	0 700		0.000	0.070	0.046	0.045	0 00 -	Yes
p-value for equality of coefficients for three cohorts	0.706	0.044	0.038	0.276	0.316	0.345	0.267	0.353
p-value for equality of coefficients of Durov's and younger cohort	0.762	0.014	0.011	0.139	0.142	0.155	0.114	0.158
p-value for equality of coefficients of Durov's and older conort	0.583	0.307	0.279	0.175	0.259	0.297	0.224	0.275

Table 1. Determinants of VK Penetration in 2011 (First Stage Regression). Corrected spherical distances.

Notes: The table displays an issue with replicating Table I from Enikolopov et al. (2020) with corrected city coordinates and spherical distances to Moscow and Saint Petersburg. Robust standard errors in brackets are adjusted by clusters within regions. Unit of observation is a city. Logarithm of any variable is calculated with 1 added inside. "Yes" is added to indicate inclusion of a group of controls. Population controls correspond to a 5th polynomial of city population. Age cohort controls include the number of people aged 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50 and older years, in each city according to 2010 Russian Census. Education controls include the share of population with higher education overall according to 2002 Russian Census and separately in each of the age cohorts according to 2010 Russian Census, to account for both the levels and the change in education. Electoral controls include vote for Yabloko party, Communist Party (KPRF), LDPR party, the ruling party (Our Home is Russia in 1995, Unity in 1999, United Russia in 2003), and electoral turnout for a corresponding year.

	Incidence	e of protests	s, dummy,	Dec 2011	Log (nu	mber of pro	otesters), D	ec 2011
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Log (SPbSU students), same 5-year cohort as VK founder	0.059	0.060	0.063	0.062	0.218	0.222	0.240	0.236
	[0.021]	[0.020]	[0.021]	[0.021]	[0.119]	[0.117]	[0.119]	[0.121]
Log (SPbSU students), one cohort younger than VK founder	0.011	0.010	0.009	0.012	0.149	0.145	0.135	0.158
	[0.020]	[0.019]	[0.020]	[0.020]	[0,103]	[0.102]	[0.104]	[0.103]
Log (SPbSU students), one cohort older than VK founder	-0.019	-0.017	-0.018	-0.016	-0.103	-0.094	-0.096	-0.091
	[0.020]	[0.021]	[0.021]	[0.021]	[0.112]	[0.113]	[0.112]	[0.112]
Regional center	-0.015	-0.011	-0.006	-0.010	0.272	0.290	0.321	0.292
	[0.099]	[0.097]	[0.096]	[0.098]	[0.494]	[0.484]	[0.486]	[0.491]
Distance to Saint Petersburg, km	-0.000	0.000	0.000	0.000	-0.000	-0.000	-0.000	-0.000
-	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
Distance to Moscow, km	0.000	-0.000	-0.000	-0.000	0.000	0.000	0.000	0.000
	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
Rayon center (county seat)	-0.001	0.002	-0.007	-0.008	0.009	0.023	-0.018	-0.032
	[0.009]	[0.010]	[0.010]	[0.011]	[0.044]	[0.049]	[0.050]	[0.057]
Log (average wage), city-level, 2011	0.026	0.046	0.015	-0.002	0.158	0.235	0.100	0.032
	[0.034]	[0.036]	[0.035]	[0.033]	[0.178]	[0.186]	[0.194]	[0.180]
Presence of a university in a city, 2011	0.198	0.195	0.194	0.198	0.883	0.876	0.858	0.895
	[0.099]	[0.098]	[0.097]	[0.099]	[0.428]	[0.427]	[0.424]	[0.435]
Internet penetration, region-level, 2011	-0.019	0.004	-0.008	-0.017	0.061	0.143	0.115	0.067
less (sumbles of Oslashie conditions) 0014	[0.046]	[0.045]	[0.054]	[0.048]	[0.250]	[0.237]	[0.275]	[0.254]
Log (number of Odnoklassniki users), 2014	0.034	0.026	0.038	0.034	0.153	0.120	0.169	0.160
Ethnia fractionalization, 2010	[0.019]	[0.021]	[0.021]	[0.020]	[0.121]	[0.129]	[0.129]	[0.125]
Ethnic fractionalization, 2010	-0.084	-0.077	-0.081	-0.081	-0.501	-0.430	-0.481	-0.511
	[0.061]	[0.063]	[0.065]	[0.063]	[0.328]	[0.343]	[0.349]	[0.350]
Observations	625	625	625	625	625	625	625	625
R-squared	0.776	0.780	0.780	0.781	0.824	0.826	0.828	0.827
Mean of the dependent variable	0.134	0.134	0.134	0.134	0.773	0.773	0.773	0.773
SD of the dependent variable	0.341	0.341	0.341	0.341	2.024	2.024	2.024	2.024
Population controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Age cohort controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Education controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Electoral controls, 1995		Yes				Yes		
Electoral controls, 1999			Yes				Yes	
Electoral controls, 2003				Yes				Yes
p-value for equality of coefficients for three cohorts	0.0883	0.0813	0.0616	0.0866	0.253	0.276	0.255	0.250
p-value for equality of coefficients of Durov's and younger coho	0.113	0.0894	0.0739	0.107	0.674	0.632	0.521	0.640
p-value for equality of coefficients of Durov's and older cohort	0.0330	0.0348	0.0262	0.0331	0.124	0.127	0.108	0.119

Table 2. Student Cohorts and Protest Participation in 2011. Corrected spherical distances.

Notes: The table displays robustness of Table SA.I in Enikolopov et al. (2020) to correcting city coordinates and the corresponding spherical distances to Moscow and Saint Petersburg. Robust standard errors in brackets are adjusted by clusters within regions. Unit of observation is a city. Logarithm of any variable is calculated with 1 added inside. "Yes" is added to indicate inclusion of a group of controls. Flexible controls for population (5th polynomial) are included in all specifications. Age cohort controls include the number of people aged 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50 and older years, in each city according to 2010 Russian Census. Education controls include the share of population with higher education overall according to 2002 Russian Census and separately in each of the age cohorts according to 2010 Russian Census, to account for both the levels and the change in education. Electoral controls include vote for Yabloko party, Communist Party (KPRF), LDPR party, the ruling party (Our Home is Russia in 1995, Unity in 1999, United Russia in 2003), and electoral turnout for a corresponding year.

Table 3. VK Penetration and Protest Participation in	າ 2011. C	corrected s	pherical	distances.
--	-----------	-------------	----------	------------

Panel A. Probability of protests

	Incidence of protests, dummy, Dec 2011									
IV	IV	IV	IV	OLS	OLS	OLS	OLS			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
2.059	2.084	1.736	1.895	0.067	0.063	0.064	0.064			
[2.523]	[2.535]	[1.629]	[2.112]	[0.020]	[0.021]	[0.021]	[0.020]			
entire grid	entire grid	entire grid	entire grid							
0.093	0.091	0.076	0.083	0.029	0.028	0.027	0.030			
[0.127]	[0.125]	[0.087]	[0.104]	[0.021]	[0.020]	[0.021]	[0.020]			
0.069	0.064	0.051	0.055	0.004	0.007	0.006	0.007			
[0.115]	[0.107]	[0.077]	[0.090]	[0.018]	[0.018]	[0.018]	[0.019]			
625	625	625	625	625	625	625	625			
0.134	0.134	0.134	0.134	0.134	0.134	0.134	0.134			
0.341	0.341	0.341	0.341	0.341	0.341	0.341	0.341			
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
	Yes				Yes					
		Yes				Yes				
			Yes				Yes			
0.517	0.522	0.877	0.620							
0.698	0.699	1.136	0.909							
	IV (1) 2.059 [2.523] entire grid 0.093 [0.127] 0.069 [0.115] 625 0.134 0.341 Yes Yes Yes Yes Yes Yes 0.517 0.698	IV IV (1) (2) 2.059 2.084 [2.523] [2.535] entire grid entire grid 0.093 0.091 [0.127] [0.125] 0.069 0.064 [0.115] [0.107] 625 625 0.134 0.341 Yes Yes 0.517 0.522 0.698 0.699	IV IV IV (1) (2) (3) 2.059 2.084 1.736 [2.523] [2.535] [1.629] entire grid entire grid entire grid 0.093 0.091 0.076 [0.127] [0.125] [0.087] 0.069 0.064 0.051 [0.115] [0.107] [0.077] 625 625 625 0.134 0.134 0.341 0.341 0.341 0.341 Yes Yes Yes Yes 0.517 0.522<	IV IV IV IV IV (1) (2) (3) (4) 2.059 2.084 1.736 1.895 [2.523] [2.535] [1.629] [2.112] entire grid entire grid entire grid entire grid 0.093 0.091 0.076 0.083 [0.127] [0.125] [0.087] [0.104] 0.069 0.064 0.051 0.055 [0.115] [0.107] [0.077] [0.090] 625 625 625 625 0.134 0.134 0.134 0.341 0.341 0.341 0.341 0.341 Yes Yes Yes Yes Yes Yes	Incidence of protests, dummy, Dec IV IV IV OLS (1) (2) (3) (4) (5) 2.059 2.084 1.736 1.895 0.067 [2.523] [2.535] [1.629] [2.112] [0.020] entire grid entire grid entire grid entire grid 0.093 0.093 0.091 0.076 0.083 0.029 [0.127] [0.125] [0.087] [0.104] [0.021] 0.069 0.064 0.051 0.055 0.004 [0.115] [0.107] [0.077] [0.090] [0.018] 625 625 625 625 625 0.134 0.134 0.134 0.134 0.341 0.341 0.341 0.341 0.341 0.341 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Incidence of protests, dummy, Dec 2011 IV IV IV V OLS OLS (1) (2) (3) (4) (5) (6) 2.059 2.084 1.736 1.895 0.067 0.063 [2.523] [2.535] [1.629] [2.112] [0.020] [0.021] entire grid entire grid entire grid entire grid entire grid [0.020] [0.021] 0.093 0.091 0.076 0.083 0.029 0.028 [0.127] [0.125] [0.087] [0.104] [0.021] [0.020] 0.069 0.064 0.051 0.055 0.004 0.007 [0.115] [0.107] [0.077] [0.990] [0.018] [0.018] 625 625 625 625 625 625 0.134 0.134 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 Yes	Incidence of protests, dummy, Dec 2011 IV IV IV IV OLS OLS OLS (1) (2) (3) (4) (5) (6) (7) 2.059 2.084 1.736 1.895 0.067 0.063 0.064 [2.523] [2.535] [1.629] [2.112] [0.020] [0.021] [0.021] entire grid entire grid entire grid entire grid 0.028 0.027 [0.127] [0.125] [0.087] [0.104] [0.021] [0.020] [0.021] 0.069 0.064 0.051 0.055 0.004 0.007 0.006 [0.115] [0.107] [0.077] [0.090] [0.018] [0.018] [0.018] 625 625 625 625 625 625 625 0.134 0.134 0.134 0.134 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0			

Panel B. Number of protesters

			Log	(number of pro	testers), Dec 2	011		
	IV	IV	IV	IV	OLS	OLS	OLS	OLS
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Log (number of VK users), June 2011	7.582	7.733	6.556	7.220	0.369	0.346	0.353	0.355
	[9.439]	[9.531]	[6.389]	[8.197]	[0.116]	[0.121]	[0.124]	[0.121]
Weak IV Robust 95% Confidence Interval	entire grid	entire grid	(0.202, ∞)	entire grid				
Log (SPbSU students), one cohort younger than VK founder	0.450	0.445	0.388	0.428	0.219	0.215	0.208	0.229
	[0.468]	[0.464]	[0.336]	[0.399]	[0.108]	[0.107]	[0.109]	[0.107]
Log (SPbSU students), one cohort older than VK founder	0.222	0.207	0.165	0.181	-0.013	-0.004	-0.002	0.001
	[0.416]	[0.391]	[0.289]	[0.336]	[0.093]	[0.094]	[0.092]	[0.094]
Observations	625	625	625	625	625	625	625	625
Mean of the dependent variable	0.773	0.773	0.773	0.773	0.773	0.773	0.773	0.773
SD of the dependent variable	2.024	2.024	2.024	2.024	2.024	2.024	2.024	2.024
Population controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Age cohort controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Education controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Other controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Electoral controls, 1995		Yes				Yes		
Electoral controls, 1999			Yes				Yes	
Electoral controls, 2003				Yes				Yes
Kleibergen-Paap F-stat	0.517	0.522	0.877	0.620				
Effective F-statistics (Olea Montiel and Pflueger 2013)	0.698	0.699	1.136	0.909				

Notes: The table displays an issue with replicating Table II from Enikolopov et al. (2020) with corrected city coordinates and spherical distances to Moscow and Saint Petersburg. Robust standard errors in brackets are adjusted by clusters within regions. Unit of observation is a city. Logarithm of any variable is calculated with 1 added inside. "Yes" is added to indicate inclusion of a group of controls. Flexible controls for population (5th polynomial) are included in all specifications. Age cohort controls include the number of people aged 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50 and older years, in each city according to 2010 Russian Census. Education controls include the share of population with higher education overall according to 2002 Russian Census and separately in each of the age cohorts according to 2010 Russian Census, to account for both the levels and the change in education. Electoral controls include vote for Yabloko party, Communist Party (KPRF), LDPR party, the ruling party (Our Home is Russia in 1995, Unity in 1999, United Russia in 2003), and electoral turnout for a corresponding year. Other controls include dummy for regional and county centers, distances to Moscow and St Petersburg, log (average wage), share of people with higher education in 2002, internet penetration in 2011, log (Odnoklassniki users in 2014). Weak IV robust 95% confidence intervals are Anderson-Rubin confidence sets calculated using software in Finlay and Magnusson (2009), which accommodates heteroskedasticity.

		Log (number	of VK users), June 2011	
Gaussian noise SD	1	100	500	1000	1462
	(1)	(2)	(3)	(4)	(5)
Log (SPbSU students), same 5-year cohort as VK founder	0.0285	0.0621	0.1153	0.1163	0.1222
	[0.0400]	[0.0409]	[0.0482]	[0.0495]	[0.0483]
Log (SPbSU students), one cohort younger than VK founder	-0.0397	-0.0335	-0.0355	-0.0290	-0.0303
	[0.0322]	[0.0333]	[0.0335]	[0.0327]	[0.0329]
Log (SPbSU students), one cohort older than VK founder	-0.0428	-0.0078	0.0478	0.0564	0.0588
	[0.0386]	[0.0396]	[0.0400]	[0.0385]	[0.0393]
Regional center	0.1519	0.1752	0.2952	0.3222	0.3034
	[0.1292]	[0.1254]	[0.1170]	[0.1157]	[0.1198]
Rayon center (county seat)	0.0077	0.0192	0.0445	0.0539	0.0470
	[0.0547]	[0.0575]	[0.0647]	[0.0668]	[0.0661]
Distance to Saint Petersburg + Gaussian noise, km	-0.0008	-0.0005	-0.0001	-0.0000	-0.0000
	[0.0001]	[0.0001]	[0.0000]	[0.0000]	[0.0000]
Distance to Moscow, km	0.0006	0.0003	-0.0001	-0.0001	-0.0002
	[0.0001]	[0.0001]	[0.0000]	[0.0000]	[0.0000]
Log (average wage), city-level, 2011	0.3259	0.3894	0.5006	0.5114	0.5116
	[0.1269]	[0.1221]	[0.1185]	[0.1188]	[0.1186]
Presence of a university in a city, 2011	0.1563	0.1582	0.1155	0.0864	0.1008
	[0.0935]	[0.0918]	[0.0827]	[0.0822]	[0.0853]
Internet penetration, region-level, 2011	-0.0490	-0.0402	0.0050	0.0055	0.0092
	[0.1630]	[0.1517]	[0.1554]	[0.1591]	[0.1584]
Log (number of Odnoklassniki users), 2014	0.2378	0.1805	0.1196	0.1107	0.1030
	[0.0819]	[0.0795]	[0.0767]	[0.0761]	[0.0765]
Ethnic fractionalization, 2010	0.6329	0.5627	0.4232	0.4087	0.4126
	[0.2180]	[0.2258]	[0.2299]	[0.2293]	[0.2339]
Observations	625	625	625	625	625
R-squared	0 9336	0 9294	0 9252	0 9250	0 9244
Mean of the dependent variable	9 536	9 536	9 536	9 536	9 536
SD of the dependent variable	1 334	1 334	1 334	1 334	1 334
Population controls	Yes	Yes	Yes	Yes	Yes
Age cohort controls	Yes	Yes	Yes	Yes	Yes
Education controls	Yes	Yes	Yes	Yes	Yes
n-value for equality of coefficients for three cohorts	0.318	0 148	0 0277	0 0347	0 0245
p-value for equality of coefficients of Duroy's and vounger coho	0.143	0.0518	0.0123	0.0155	0.0112
p-value for equality of coefficients of Durov's and older cohort	0.261	0.301	0.363	0 411	0.384
Kleibergen-Paap F-stat	0.509	2 297	5 719	5 517	6 396
Effective E-stat (Montiel Olea and Pflueger 2013)	0.687	3 129	10 885	11 026	12 083

Table 4. Determinants of VK Penetration in 2011 (First Stage Regression). Adding Gaussian Noise to Cities' Distances to Saint Petersburg.

Notes: The table shows that a replication issue with Table I from Enikolopov et al. (2020) is resolved simply by adding Gaussian noise with zero mean and sufficient variance to a city's spherical distance to Saint Petersburg. Table varies the standard deviation of this Gaussian noise from 1 In column (1) to 1462 in column (5), corresponding to the standard deviation of the corrected spherical distance variable to Saint Petersburg. Robust standard errors in brackets are adjusted by clusters within regions. Unit of observation is a city. Logarithm of any variable is calculated with 1 added inside. "Yes" is added to indicate inclusion of a group of controls. Population controls correspond to a 5th polynomial of city population. Age cohort controls include the number of people aged 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50 and older years, in each city according to 2010 Russian Census. Education controls include the share of population with higher education overall according to 2002 Russian Census and separately in each of the age cohorts according to 2010 Russian Census, to account for both the levels and the change in education.

Table 5. VK Penetration and Protest Participation in 2011. Adding Gaussian Noise to Cities' Distances to Saint Petersburg.

Panel A. Probabilit	ty of protests	
---------------------	----------------	--

		Incidence of protests, dummy, Dec 2011								
	IV	IV	IV	IV	OLS	OLS	OLS	OLS		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Log (number of VK users), June 2011	0.473	0.472	0.532	0.482	0.068	0.062	0.065	0.065		
	[0.192]	[0.192]	[0.215]	[0.194]	[0.020]	[0.021]	[0.022]	[0.021]		
Weak IV Robust 95% Confidence Interval	(0.18, 2.07)	(0.18, 2.23)	(0.20, 2.37)	(0.18, 1.99)						
Log (SPbSU students), one cohort younger than VK founder	0.028	0.028	0.029	0.030	0.031	0.030	0.029	0.032		
	[0.024]	[0.023]	[0.026]	[0.025]	[0.021]	[0.021]	[0.021]	[0.021]		
Log (SPbSU students), one cohort older than VK founder	-0.043	-0.044	-0.039	-0.044	0.005	0.005	0.006	0.007		
	[0.030]	[0.031]	[0.029]	[0.031]	[0.016]	[0.016]	[0.016]	[0.016]		
Observations	625	625	625	625	625	625	625	625		
Mean of the dependent variable	0.134	0.134	0.134	0.134	0.134	0.134	0.134	0.134		
SD of the dependent variable	0.341	0.341	0.341	0.341	0.341	0.341	0.341	0.341		
Population controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Age cohort controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Education controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Other controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Electoral controls, 1995		Yes				Yes				
Electoral controls, 1999			Yes				Yes			
Electoral controls, 2003				Yes				Yes		
Kleibergen-Paap F-stat	6.396	6.241	6.427	6.431						
Effective F-stat (Montiel Olea and Pflueger 2013)	12.08	11.55	10.71	12.37						

Panel B. Number of protesters

			Lo	g (number of pro	testers), Dec 2	011		
	IV	IV	IV	IV	OLS	OLS	OLS	OLS
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Log (number of VK users), June 2011	1.930	1.927	2.176	2.019	0.396	0.365	0.375	0.382
	[0.973]	[0.978]	[1.091]	[0.982]	[0.115]	[0.120]	[0.127]	[0.121]
Weak IV Robust 95% Confidence Interval	(0.02, 8.46)	(-0.02, ∞)	(0.08, ∞)	(0.14, 8.36)				
Log (SPbSU students), one cohort younger than VK founder	0.210	0.206	0.212	0.218	0.235	0.229	0.222	0.246
	[0.117]	[0.117]	[0.127]	[0.122]	[0.110]	[0.109]	[0.112]	[0.110]
Log (SPbSU students), one cohort older than VK founder	-0.197	-0.202	-0.174	-0.202	0.012	0.010	0.019	0.024
	[0.162]	[0.163]	[0.149]	[0.166]	[0.084]	[0.084]	[0.082]	[0.085]
Observations	625	625	625	625	625	625	625	625
Mean of the dependent variable	0.773	0.773	0.773	0.773	0.773	0.773	0.773	0.773
SD of the dependent variable	2.024	2.024	2.024	2.024	2.024	2.024	2.024	2.024
Population controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Age cohort controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Education controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Other controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Electoral controls, 1995		Yes				Yes		
Electoral controls, 1999			Yes				Yes	
Electoral controls, 2003				Yes				Yes
Kleibergen-Paap F-stat	6.396	6.241	6.427	6.431				
Effective F-statistics (Olea Montiel and Pflueger 2013)	12.08	11.55	10.71	12.37				

Notes: The table shows that a replication issue with Table II from Enikolopov et al. (2020) is resolved simply by adding Gaussian noise with zero mean and sufficient variance to a city's spherical distance to Saint Petersburg. In this table, added noise's standard deviation is 1462 which corresponds to standard deviation of the corrected spherical distance variable to Saint Petersburg. Robust standard errors in brackets are adjusted by clusters within regions. Unit of observation is a city. Logarithm of any variable is calculated with 1 added inside. "Yes" is added to indicate inclusion of a group of controls. Flexible controls for population (5th polynomial) are included in all specifications. Age cohort controls include the number of people aged 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50 and older years, in each city according to 2010 Russian Census. Education controls include the share of population with higher education overall according to 2002 Russian Census and separately in each of the age cohorts according to 2010 Russian Census, to account for both the levels and the change in education. Electoral controls include vote for Yabloko party, Communist Party (KPRF), LDPR party, the ruling party (Our Home is Russia in 1995, Unity in 1999, United Russia in 2003), and electoral turnout for a corresponding year. Other controls include dummy for regional and county centers, distances to Moscow and St Petersburg, log (average wage), share of people with higher education in 2002, internet penetration in 2011, log (Odnoklassniki users in 2014). Weak IV robust 95% confidence intervals are Anderson-Rubin confidence sets calculated using software in Finlay and Magnusson (2009), which accommodates heteroskedasticity.

Table 6. Determinants of VK Penetration in 2011 (First Stage Regression). Alternative Distance Controls.

Log (number of					ne 2011	
	(1)	(2)	(3)	(4)	(5)	(6)
Log (SPbSU students), same 5-year cohort as VK founder	0.1200	0.0958	0.1082	0.1079	0.1095	0.1071
	[0.0486]	[0.0456]	[0.0471]	[0.0470]	[0.0472]	[0.0470]
Log (SPbSU students), one cohort younger than VK founder	-0.0276	-0.0298	-0.0286	-0.0286	-0.0274	-0.0299
	[0.0326]	[0.0322]	[0.0324]	[0.0324]	[0.0327]	[0.0320]
Log (SPbSU students), one cohort older than VK founder	0.0613	0.0371	0.0498	0.0495	0.0497	0.0499
	[0.0397]	[0.0388]	[0.0391]	[0.0391]	[0.0394]	[0.0390]
Regional center	0.3100	0.2799	0.2964	0.2959	0.2955	0.2968
	[0.1193]	[0.1203]	[0.1197]	[0.1197]	[0.1191]	[0.1204]
Rayon center (county seat)	0.0520	0.0493	0.0515	0.0515	0.0521	0.0502
	[0.0661]	[0.0624]	[0.0643]	[0.0642]	[0.0652]	[0.0633]
Log (average wage), city-level, 2011	0.5152	0.4986	0.5100	0.5098	0.5144	0.5030
	[0.1181]	[0.1197]	[0.1188]	[0.1188]	[0.1189]	[0.1186]
Presence of a university in a city, 2011	0.0946	0.1075	0.1006	0.1008	0.1045	0.0964
	[0.0853]	[0.0871]	[0.0861]	[0.0861]	[0.0864]	[0.0858]
Internet penetration, region-level, 2011	0.0065	-0.0211	-0.0081	-0.0084	-0.0136	-0.0008
	[0.1591]	[0.1542]	[0.1562]	[0.1562]	[0.1564]	[0.1564]
Log (number of Odnoklassniki users), 2014	0.1002	0.1384	0.1190	0.1195	0.1143	0.1236
	[0.0768]	[0.0782]	[0.0773]	[0.0773]	[0.0775]	[0.0772]
Ethnic fractionalization, 2010	0.4085	0.4728	0.4402	0.4411	0.4194	0.4620
	[0.2331]	[0.2281]	[0.2306]	[0.2306]	[0.2330]	[0.2282]
Distance to Saint Petersburg, km	-0.0002					
	[0.0000]					
Distance to Moscow, km		-0.0002				
Augusta between distances to Management Opicst Determine		[0.0000]	0 0000			
Average between distances to Moscow and Saint Petersburg			-0.0002			
Drive size of a second of distances to Management Opint Datasets			[0.0000]	0.0050		
Principal component of distances to Moscow and Saint Petersburg				-0.2052		
Minimum between distances to Messey, and Coint Deteroburg				[0.0241]	0 0000	
Minimum between distances to Moscow and Saint Petersburg					-0.0002	
Maximum batwaan diatanaga to Magagaw and Spint Datarahura					[0.0000]	0 0002
Maximum between distances to Moscow and Saint Petersburg						-0.0002
						[0.0000]
Observations	625	625	625	625	625	625
R-squared	0.9243	0.9282	0.9263	0.9263	0.9252	0.9273
Mean of the dependent variable	9.536	9.536	9.536	9.536	9.536	9.536
SD of the dependent variable	1.334	1.334	1.334	1.334	1.334	1.334
Population controls	Yes	Yes	Yes	Yes	Yes	Yes
Age cohort controls	Yes	Yes	Yes	Yes	Yes	Yes
Education controls	Yes	Yes	Yes	Yes	Yes	Yes
p-value for equality of coefficients for three cohorts	0.0295	0.0567	0.0402	0.0406	0.0440	0.0364
p-value for equality of coefficients of Durov's and younger cohort	0.0136	0.0225	0.0172	0.0173	0.0184	0.0160
p-value for equality of coefficients of Durov's and older cohort	0.422	0.400	0.414	0.413	0.404	0.423
Kleibergen-Paap F-stat	6.094	4.419	5.285	5.262	5.383	5.193
Effective F-stat (Montiel Olea and Pflueger 2013)	11.688	7.787	9.729	9.675	9.820	9.654

Notes: The table shows that a replication issue with Table I from Enikolopov et al. (2020) is resolved with alternative distance control compositions that alleviate the issue of near multicollinearity. Columns (1) and (2) leave only spherical distance to Saint Petersburg and Moscow, respectively. Column (3) includes a mean of the two distances, column (4) includes their principal component, and column (5) includes their minimum and column (6) includes their maximum. Robust standard errors in brackets are adjusted by clusters within regions. Unit of observation is a city. Logarithm of any variable is calculated with 1 added inside. "Yes" is added to indicate inclusion of a group of controls. Flexible controls for population (5th polynomial) are included in all specifications. Age cohort controls include the number of people aged 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50 and older years, in each city according to 2010 Russian Census. Education controls include the share of population with higher education overall according to 2002 Russian Census and separately in each of the age cohorts according to 2010 Russian Census, to account for both the levels and the change in education.

			Log (nu	mber of VK	users), Ju	ne 2011		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Log (SPbSU students), same 5-year cohort as VK founder	0.5006	0.1715	0.1749	0.1444	0.1415	0.1415	0.1545	0.1434
	[0.1381]	[0.0441]	[0.0442]	[0.0417]	[0.0426]	[0.0408]	[0.0424]	[0.0423]
Log (SPbSU students), one cohort younger than VK founder	0.5612	-0.0267	-0.0323	-0.0312	-0.0510	-0.0485	-0.0500	-0.0505
	[0.1040]	[0.0508]	[0.0522]	[0.0333]	[0.0328]	[0.0324]	[0.0333]	[0.0328]
Log (SPbSU students), one cohort older than VK founder	0.3687	0.1040	0.0945	-0.0071	-0.0060	-0.0097	-0.0087	-0.0091
	[0.1726]	[0.0459]	[0.0448]	[0.0440]	[0.0431]	[0.0421]	[0.0418]	[0.0417]
Regional center			0.1992	0.4209	0.2757	0.2857	0.2789	0.2704
-			[0.1115]	[0.1227]	[0.1304]	[0.1293]	[0.1265]	[0.1295]
Rayon center (county seat)				0.0195	-0.0030	-0.0014	0.0096	-0.0063
				[0.0663]	[0.0621]	[0.0610]	[0.0638]	[0.0584]
Distance to Saint Petersburg, km				-0.0002	-0.0003	-0.0003	-0.0002	-0.0003
				[0.0001]	[0.0001]	[0.0001]	[0.0001]	[0.0001]
Distance to Moscow, km				0.0001	0.0002	0.0002	0.0001	0.0003
				[0.0001]	[0.0001]	[0.0001]	[0.0001]	[0.0001]
Log (average wage), city-level, 2011				0.3152	0.3317	0.3231	0.2849	0.2916
Descente of a university in a site 0014				[0.1347]	[0.1411]	[0.1433]	[0.1277]	[0.1257]
Presence of a university in a city, 2011					0.0886	0.1076	0.0873	0.1152
Internet memotantian menion local 0014					[0.0865]	[0.0866]	[0.0878]	[0.0865]
Internet penetration, region-level, 2011					-0.0312	-0.0270	-0.0441	0.0189
Les (number of Odraddassriki users) 2014					[0.1892]	[0.1839]	[0.1923]	[0.1891]
Log (number of Odnoklassniki users), 2014					0.1138	0.1333	0.1199	0.1422
Ethnis for stimuling 10040					[0.0780]	[0.0763]	[0.0779]	[0.0776]
Ethnic fractionalization, 2010					0.3789	0.4594	0.4980	0.3563
					[0.2442]	[0.2345]	[0.2327]	[0.1986]
Observations	625	625	625	625	625	625	625	625
R-squared	0.4428	0.8606	0.8614	0.9166	0.9201	0.9238	0.9230	0.9236
Mean of the dependent variable	9.536	9.536	9.536	9.536	9.536	9.536	9.536	9.536
SD of the dependent variable	1.334	1.334	1.334	1.334	1.334	1.334	1.334	1.334
Population controls		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Age cohort controls				Yes	Yes	Yes	Yes	Yes
Education controls				Yes	Yes	Yes	Yes	Yes
Electoral controls, 1995						Yes		
Electoral controls, 1999							Yes	
Electoral controls, 2003								Yes
p-value for equality of coefficients for three cohorts	0.706	0.044	0.038	0.004	0.003	0.004	0.002	0.002
p-value for equality of coefficients of Durov's and younger cohort	0.762	0.014	0.011	0.001	0.001	0.001	0.000	0.001
p-value for equality of coefficients of Durov's and older cohort	0.583	0.367	0.279	0.038	0.042	0.028	0.024	0.030

Table 7. Determinants of VK Penetration in 2011 (First Stage Regression). Preferred Specification with Driving Distances to Moscow and Saint Petersburg.

Notes: The table displays the authors' preferred version of Table I from Enikolopov et al. (2020) with driving distances to Moscow and Saint Petersburg. Robust standard errors in brackets are adjusted by clusters within regions. Unit of observation is a city. Logarithm of any variable is calculated with 1 added inside. "Yes" is added to indicate inclusion of a group of controls. Flexible controls for population (5th polynomial) are included in all specifications. Age cohort controls include the number of people aged 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50 and older years, in each city according to 2010 Russian Census. Education controls include the share of population with higher education overall according to 2002 Russian Census and separately in each of the age cohorts according to 2010 Russian Census, to account for both the levels and the change in education. Electoral controls include vote for Yabloko party, Communist Party (KPRF), LDPR party, the ruling party (Our Home is Russia in 1995, Unity in 1999, United Russia in 2003), and electoral turnout for a corresponding year.

Table 8. VK Penetration and Protest Participation in 2011. Preferred Specification with Driving Distances to Moscow and Saint Petersburg.

Panel A. P	Probability o	of protests
------------	---------------	-------------

	Incidence of protests, dummy, Dec 2011									
	IV	IV	IV	IV	OLS	OLS	OLS	OLS		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Log (number of VK users), June 2011	0.430	0.430	0.417	0.457	0.053	0.049	0.052	0.056		
	[0.167]	[0.159]	[0.154]	[0.162]	[0.018]	[0.020]	[0.019]	[0.019]		
Weak IV Robust 95% Confidence Interval	(0.16, 1.16)	(0.16, 1.06)	(0.16, 1.02)	(0.20, 1.12)						
Log (SPbSU students), one cohort younger than VK founder	0.032	0.030	0.029	0.034	0.027	0.026	0.025	0.028		
	[0.025]	[0.024]	[0.025]	[0.026]	[0.020]	[0.020]	[0.021]	[0.020]		
Log (SPbSU students), one cohort older than VK founder	-0.020	-0.017	-0.018	-0.016	-0.002	0.000	0.000	0.002		
	[0.026]	[0.025]	[0.025]	[0.026]	[0.017]	[0.017]	[0.017]	[0.017]		
Observations	625	625	625	625	625	625	625	625		
Mean of the dependent variable	0.134	0.134	0.134	0.134	0.134	0.134	0.134	0.134		
SD of the dependent variable	0.341	0.341	0.341	0.341	0.341	0.341	0.341	0.341		
Population controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Age cohort controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Education controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Other controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Electoral controls, 1995		Yes				Yes				
Electoral controls, 1999			Yes				Yes			
Electoral controls, 2003				Yes				Yes		
Kleibergen-Paap F-stat	11.03	12.04	13.26	11.51						
Effective F-stat (Montiel Olea and Pflueger 2013)	14.41	14.94	17.51	15.19						

_

Panel B. Number of protesters

	Log (number of protesters), Dec 2011									
	IV	IV	IV	IV	OLS	OLS	OLS	OLS		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Log (number of VK users), June 2011	1.762	1.766	1.744	1.913	0.337	0.309	0.328	0.346		
	[0.845]	[0.821]	[0.776]	[0.830]	[0.108]	[0.114]	[0.115]	[0.114]		
Weak IV Robust 95% Confidence Interval	(0.14, 5.05)	(0.18, 4.69)	(0.28, 4.51)	(0.32, 4.93)						
Log (SPbSU students), one cohort younger than VK founder	0.231	0.225	0.216	0.246	0.212	0.209	0.203	0.225		
	[0.121]	[0.117]	[0.121]	[0.123]	[0.107]	[0.106]	[0.108]	[0.106]		
Log (SPbSU students), one cohort older than VK founder	-0.096	-0.086	-0.086	-0.080	-0.028	-0.021	-0.015	-0.010		
	[0.124]	[0.120]	[0.119]	[0.125]	[0.089]	[0.090]	[0.089]	[0.091]		
Observations	625	625	625	625	625	625	625	625		
Mean of the dependent variable	0.773	0.773	0.773	0.773	0.773	0.773	0.773	0.773		
SD of the dependent variable	2.024	2.024	2.024	2.024	2.024	2.024	2.024	2.024		
Population controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Age cohort controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Education controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Other controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Electoral controls, 1995		Yes				Yes				
Electoral controls, 1999			Yes				Yes			
Electoral controls, 2003				Yes				Yes		
Kleibergen-Paap F-stat	11.03	12.04	13.26	11.51						
Effective F-statistics (Olea Montiel and Pflueger 2013)	14.41	14.94	17.51	15.19						

Notes: The table displays the authors' preferred version of Table I from Enikolopov et al. (2020) with driving distances to Moscow and Saint Petersburg. Robust standard errors in brackets are adjusted by clusters within regions. Unit of observation is a city. Logarithm of any variable is calculated with 1 added inside. "Yes" is added to indicate inclusion of a group of controls. Flexible controls for population (5th polynomial) are included in all specifications. Age cohort controls include the number of people aged 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50 and older years, in each city according to 2010 Russian Census. Education controls include the share of population with higher education overall according to 2002 Russian Census and separately in each of the age cohorts according to 2010 Russian Census, to account for both the levels and the change in education. Electoral controls include vote for Yabloko party, Communist Party (KPRF), LDPR party, the ruling party (Our Home is Russia in 1995, Unity in 1999, United Russia in 2003), and electoral turnout for a corresponding year. Other controls include dummy for regional and county centers, distances to Moscow and St Petersburg, log (average wage), share of people with higher education in 2002, internet penetration in 2011, log (Odnoklassniki users in 2014). Weak IV robust 95% confidence intervals are Anderson-Rubin confidence sets calculated using software in Finlay and Magnusson (2009), which accommodates heteroskedasticity.

Table 9. VK Penetration and Voting Outcomes. Preferred Specification with Driving Distances to Moscow and Saint Petersburg.

	Voting share for United Russia, 2007									
	IV	IV	IV	IV	OLS	OLS	OLS	OLS		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Log (number of VK users), June 2011	0.028	0.024	0.022	0.010	-0.022	-0.024	-0.016	-0.027		
	[0.047]	[0.045]	[0.043]	[0.037]	[0.013]	[0.011]	[0.012]	[0.011]		
Weak IV Robust 95% Confidence Interval	(08; .16)	(08; .14)	(08; .12)	(06; .12)						
Log (SPbSU students), one cohort younger than VK founder	-0.008	-0.005	-0.008	-0.006	-0.009	-0.005	-0.008	-0.007		
	[0.008]	[0.007]	[0.008]	[0.007]	[0.008]	[0.007]	[0.008]	[0.007]		
Log (SPDSU students), one conort older than VK founder	0.002	0.002	-0.000	-0.001	0.005	0.004	0.002	0.001		
	[0.007] [0.000] [0.007]									
	IV	IV	IV	IV	OLS	OLS	OLS	OLS		
Log (number of VK users) June 2011	0 107	0 100	0 111	0.095	-0 004	-0.010	-0.001	-0.011		
Log (number of VR users), such 2011	[0.056]	[0.057]	[0.049]	[0.051]	[0.013]	[0.012]	[0.012]	[0.010]		
Weak IV Robust 95% Confidence Interval	(.002; .30)	(.02;.32)	(.02; .28)	(.02; .28)		[0.0.1]	[]	[]		
Log (SPbSU students), one cohort younger than VK founder	-0.006	-0.004	-0.006	-0.004	-0.007	-0.004	-0.007	-0.005		
	[0.009]	[0.008]	[0.008]	[0.007]	[0.008]	[0.007]	[0.007]	[0.006]		
Log (SPbSU students), one cohort older than VK founder	-0.001	-0.002	-0.005	-0.004	0.005	0.004	0.002	0.001		
	[0.008]	[0.007]	[0.008]	[0.007]	[0.007]	[0.006]	[0.007]	[0.006]		
	IV	IV	IV	IN IV	OI S		015	OLS		
Log (number of VK users), June 2011	0.189	0.167	0.171	0.148	-0.041	-0.041	-0.030	-0.045		
	[0.113]	[0.106]	[0.099]	[0.100]	[0.017]	[0.017]	[0.016]	[0.015]		
Weak IV Robust 95% Confidence Interval	(.002;.64)	(02; .58)	(.002;.52)	(02; .54)						
Weak IV Robust 90% Confidence Interval	(.02; .48)	(.02; .44)	(.04; .42)	(.02; .42)						
Log (SPbSU students), one cohort younger than VK founder	-0.004	0.002	-0.005	0.000	-0.005	0.001	-0.006	-0.002		
Log (SDhSII atudanta) and aphart alder than VK foundar	[0.014]	[0.012]	[0.013]	[0.011]	[0.012]	[0.011]	[0.012]	[0.011]		
Log (SPDSO students), one conort order than VK founder	0.005	0.009	0.002	0.001	0.018	0.020	0.013	0.011		
	IV	IV	IV	IV	OLS	OLS	OLS	OLS		
Log (number of VK users), June 2011	0.100	0.100	0.089	0.078	-0.017	-0.016	-0.013	-0.021		
March N/ Patrick 05%/ Operational Internet	[0.064]	[0.064]	[0.057]	[0.054]	[0.012]	[0.011]	[0.011]	[0.009]		
weak iv Robust 95% Confidence Interval	(.002,.34)	(.002,.34)	(.002, .20)	(.002, .20)						
Log (SPbSU students), one cohort younger than VK founder	-0.001	0.001	-0.001	0.000	-0.002	0.000	-0.002	-0.001		
Log (SDbSLL students) one cohort older than VK founder	[0.009]	[0.008]	[0.009]	[0.007]	[0.008]	[0.007]	[0.008]	[0.007]		
Log (or boo students), one conort older than vic lounder	[0.009]	[0.009]	[0.002	[0.008]	[0.007]	[0.007]	[0.008]	[0.007]		
	Voting share for United Russia. 2016									
	IV	IV	IV	IV	OLS	OLS	OLS	OLS		
Log (number of VK users), June 2011	0.148	0.128	0.118	0.092	-0.001	0.009	0.014	-0.000		
Weak IV Robust 95% Confidence Interval	[0.091]	[0.090]	[0.077]	[U.U66] (- 02: 32)	[0.019]	[0.019]	[0.018]	[0.013]		
Weak IV Robust 90% Confidence Interval	(.002;.36)	(02; .34)	(.002;.28)	(.002;.02)						
Log (SPbSU students) one cohort younger than VK founder	-0.001	0.005	-0.002	0.001	-0 002	0 004	-0.003	0 000		
Log (of boo bladento), one bonort younger than victounder	[0.012]	[0.010]	[0.012]	[0.009]	[0.012]	[0.009]	[0.011]	[0.009]		
Log (SPbSU students), one cohort older than VK founder	0.007	0.012	0.003	0.004	0.015	0.018	0.009	0.009		
Denvirting Are extended Education and Other sectors	[0.011]	[0.011]	[0.011]	[0.009]	[0.011]	[0.011]	[0.011]	[0.009]		
Population, Age conorts, Education, and Other controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Electoral controls, 1999		162	Yes			162	Yes			
Electoral controls, 2003				Yes				Yes		
Observations	625	625	625	625	625	625	625	625		
Kleibergen-Paap F-stat Effective E-statistics (Olea Montiel and Pflueger 2013)	11.07 14 31	11.57 14 40	12.88	11.34 15.07						
	17.01	17.43	10.02	10.07						

Notes: The table displays the authors' preferred version of Table I from Enikolopov et al. (2020) with driving distances to Moscow and Saint Petersburg. Robust standard errors in brackets are adjusted by clusters within regions. Unit of observation is a city. Since the outcomes are shares of population, population weights are applied. Logarithm of any variable is calculated with 1 added inside. "Yes" is added to indicate inclusion of a group of controls. Flexible controls for population (5th polynomial) are included in all specifications. Age cohort controls include the number of people aged 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50 and older years, in each city according to 2010 Russian Census. Education controls include the share of population with higher education overall according to 2002 Russian Census and separately in each of the age cohorts according to 2010 Russian Census, to account for both the levels and the change in education. Electoral controls include vote for Yabloko party, Communist Party (KPRF), LDPR party, the ruling party (Our Home is Russia in 1995, Unity in 1999, United Russia in 2003), and electoral turnout for a corresponding year. Other controls include dummy for regional and county centers, distances to Moscow and St Petersburg, log (average wage), share of people with higher education in 2002, internet penetration in 2011, log (Odnoklassniki users in 2014). Weak IV robust 95% confidence intervals are Anderson-Rubin confidence sets calculated using software in Finlay and Magnusson (2009), which accommodates heteroskedasticity.

Table 10. VK Penetration and Political Attitudes. Preferred Specification with Driving Distances to Moscow and Saint Petersburg.

	How do you assess the work of president Dmitry Medvedev							
	Good and	Good and	Good and	Bad, but	Bad and	Bad and		
	getting	remains	getting	getting	remains	getting		
	better	the same	worse	better	the same	worse		
	(1)	(2)	(3)	(4)	(5)	(6)		
Log (number of VK users), June 2011	0.186	-0.075	0.001	-0.059	-0.022	0.014		
	[0.090]	[0.111]	[0.060]	[0.047]	[0.063]	[0.048]		
Log (SPbSU students), one cohort younger than VK founder	-0.012	0.009	0.002	0.012	0.002	0.005		
	[0.013]	[0.008]	[0.006]	[0.004]	[0.009]	[0.008]		
Log (SPbSU students), one cohort older than VK founder	-0.002	-0.017	-0.002	0.003	-0.016	-0.006		
	[0.015]	[0.011]	[0.008]	[0.006]	[0.008]	[0.006]		
	How do	you asses	s the work o	of prime mi	nister Vladir	nir Putin		
	Good and	Good and	Good and	Bad, but	Bad and	Bad and		
	getting	remains	getting	getting	remains	getting		
	better	the same	worse	better	the same	worse		
Log (number of VK users), June 2011	0.158	-0.052	0.033	-0.037	-0.072	-0.015		
	[0.083]	[0.099]	[0.046]	[0.035]	[0.061]	[0.044]		
Log (SPDSU students), one conort younger than VK founder	-0.020	0.012	0.001	0.007	0.007	0.004		
Law (ODb OLL students), such as trading them.) (1/ foundam	[0.015]	[0.008]	[0.005]	[0.003]	[0.009]	[0.006]		
Log (SPDSU students), one conort older than VK founder	0.006	-0.023	-0.009	0.004	-0.011	-0.005		
	[0.016]		[U.UU6]	[0.004]	[0.009]	[U.UU6]		
	How do you assess the work of the government							
	Good and	romaine	Good and	dau, but	romaine	datting		
	bottor	the same	yetting	bottor	the same	yeuny		
l og (number of VK users) lune 2011	0.246	0.075				-0 038		
	10 0921	IN 0941	-0.043 [0.057]	-0.004 [0.065]	10 0811	10.000		
Log (SPbSU students) one cohort younger than VK founder	-0.016	0.018	0.003	0.013	-0.002	-0.000		
Edg (or boo stadents), one conort younger than victounder	[0 015]	0.010	10 0061	10 0061	[0 012]	10.000		
l og (SPbSU students), one cohort older than VK founder	-0.002	-0.018	0.006	0.003	-0.026	-0.002		
	[0 016]	[0 013]	[0 009]	[0 008]	[0 010]	[0 009]		
	Which pa	arty are you	planning to	vote for in	December	elections		
	United	Just	LDPR	KPRF	Patriots of	Yabloko		
	Russia	Russia			Russia			
Log (number of VK users), June 2011	0.226	0.037	-0.042	-0.013	-0.001	-0.001		
	[0.109]	[0.046]	[0.044]	[0.051]	[0.007]	[0.010]		
Log (SPbSU students), one cohort younger than VK founder	-0.004	0.000	0.007	0.003	0.001	0.001		
	[0.013]	[0.005]	[0.005]	[0.005]	[0.001]	[0.001]		
Log (SPbSU students), one cohort older than VK founder	-0.022	-0.002	0.002	0.001	0.001	-0.002		
	[0.019]	[0.006]	[0.007]	[0.006]	[0.001]	[0.002]		
	Do you	personally a	admit or exc	lude a pos	sibility to ta	ke part in		
	any protests							
	Admit	Exclude	Difficult to					
Les (sumber of) ((Current)) have 0014	0.450	0.050	answer					
Log (number of VK users), June 2011	-0.156	0.050	0.112					
Log (CDbCLL students) one sehert verser there \/// ferred-r	[0.120]	[0.149]	[U.U98]					
Log (Sedou students), one conort younger than VK tounder	-0.003		10000					
Log (SDhSLL students) one schort alder then \/K founder	[0.012]	0.020	0.009					
Log (or boo students), one conditioner than VK rounder	0.027	10 0001	0.002 [0.040]					
	[0.010]	[0.023]	[0.019]					

Notes: The table displays the authors' preferred version of Table I from Enikolopov et al. (2020) with driving distances to Moscow and Saint Petersburg. Robust standard errors in brackets are adjusted by clusters within regions. Unit of observation is an individual respondent. Survey weights are applied. Logarithm of any variable is calculated with 1 added inside. The table presents results of 27 separate IV regressions. All regressions include the following city-level controls:5th polynomial of population, the number of people aged 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50 and older years, the share of population with higher education in each of the age cohorts separately, dummy for regional and county centers , distances to Moscow and St Petersburg, log (average wage), share of population with higher education in 2002, internet penetration in 2011, log (Odnoklassniki users in 2014).